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1 Introduction

Forecasters are well aware of the so–called principle of parsimony: “simple, parsimonious

models tend to be best for out–of–sample forecasting...” (Diebold (1998)). Although an

emphasis on parsimony may be justified on various grounds, parameter estimation error is

one key reason. In many practical situations, estimating additional parameters can raise

the forecast error variance above what might be obtained with a simple model. Such is

clearly true when the additional parameters have population values of zero. But the same

can apply even when the population values of the additional parameters are non–zero, if

the marginal explanatory power associated with the additional parameters is low enough.

In such cases, in finite samples the additional parameter estimation noise may raise the

forecast error variance more than including information from additional variables lowers it.

For example, simulation evidence in Clark and McCracken (2005b) shows that even though

the true model relates inflation to the output gap, in finite samples a simple AR model for

inflation will often forecast as well as or better than the true model. Clark and West (2004,

2005) obtain a similar result for some other applications.

As this discussion suggests, parameter estimation noise creates a forecast accuracy trade-

off. Excluding variables that truly belong in the model could adversely affect forecast ac-

curacy. Yet including the variables could raise the forecast error variance if the associated

parameters are estimated sufficiently imprecisely. In light of such a tradeoff, combining fore-

casts from the unrestricted and restricted (or parsimonious) models could improve forecast

accuracy. Such combination could be seen as a form of shrinkage, which various studies,

such as Stock and Watson (2003), have found to be effective in forecasting.

Accordingly, this paper presents analytical, Monte Carlo, and empirical evidence on

the effectiveness of combining forecasts from nested models. Our analytics are based on

models we characterize as “weakly” (or, in the terminology of Stock and Watson (2005),

“asymptotically”) nested: the unrestricted model is the true model, but as the sample size

grows large, the DGP converges to the restricted model. This analytic approach captures

the practical reality that, in many instances, the predictive content of some variables of

interest is quite low. Although we focus the presented analysis on nested linear models, our

results could be generalized to nested nonlinear models.

Under the weak nesting specification, we derive weights for combining the forecasts

from estimates of the restricted and unrestricted models that are optimal in the sense of
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minimizing the forecast mean square error (MSE). We then characterize the settings under

which the combination forecast will be better than either the restricted or unrestricted

forecasts, and the settings in which either the restricted or unrestricted forecast will be

most accurate. In the special case in which the coefficients on the extra variables in the

unrestricted model are of a magnitude that makes the restricted and unrestricted models

equally accurate, the MSE–minimizing forecast is a simple, equally–weighted average of the

restricted and unrestricted forecasts.

In the Monte Carlo and empirical analysis, we show that our proposed approach of com-

bining forecasts from nested models works well compared to various alternative methods of

forecasting. These alternatives include: using model selection criteria such as the SIC to

determine the optimal model (choosing between the restricted and unrestricted, estimated

at time t) for forecasting at time t + 1; Bayesian estimation with priors that push certain

coefficients toward zero; and Bayesian model averaging of the restricted and unrestricted

models. To ensure the practical relevance of our results, we base our Monte Carlo exper-

iments on DGPs calibrated to actual empirical applications, and, in our empirical work,

we consider a wide range of applications. Overall, in both the Monte Carlo and empiri-

cal results, two forecast methods seem to work best, in the sense of consistently yielding

improvements in MSE: simple averaging of the restricted and unrestricted model forecasts,

and Bayesian (Minnesota BVAR) estimation of the unrestricted model.

Our results build on much prior work on forecast combination. Research focused on

non–nested models ranges from the early work of Bates and Granger (1969) to recent

contributions of Stock and Watson (2003, 2005), Elliott and Timmermann (2004), and

Smith and Wallis (2005).1 Combination of nested model forecasts has been considered

only occasionally, in such studies as Filardo (1999), Hendry and Clements (2004), and

Goyal and Welch (2003). Forecasts based on Bayesian model averaging as developed in

such studies as Wright (2003) could also combine forecasts from nested models. Of course,

such Bayesian methods of combination are predicated on model uncertainty. In contrast,

our paper provides a theoretical rationale for nested model combination in the absence of

model uncertainty. We go on to extend prior work by providing a detailed analysis of the

effectiveness of forecast combination in practice.

The paper proceeds as follows. Section 2 provides theoretical results on the possible
1A more complete survey of the extensive combination literature is beyond the scope of this paper. For

a comprehensive survey, see Timmermann (2004).
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gains from combination of forecasts from nested models, including the optimal combination

weight. In section 3 we present Monte Carlo evidence on the finite sample effectiveness of

our proposed forecast combination methods and various alternatives. Section 4 compares

the effectiveness of the forecast methods in a range of empirical applications. Section 5

concludes. Additional details pertaining to theory and data are presented in Appendixes 1

and 2.

2 Theory

We begin by using a simple example to illustrate our essential ideas and results. We then

proceed to the more general case. After detailing the necessary notation and assumptions,

we provide an analytical characterization of the bias-variance tradeoff, created by weak

predictability, involved in choosing among restricted, unrestricted, and combined forecasts.

In light of that tradeoff, we then derive the optimal combination weights.

2.1 A simple example

Suppose we are interested in forecasting yt+1 from t = T through T +P − 1, using a simple

model relating yt+1 to a constant and a strictly exogenous, scalar variable xt. Suppose,

however, that the predictive content of xt for yt+1 may be weak. To capture this possibility,

we model the population relationship between yt+1 and xt using local-to-zero asymptotics,

such that, as the sample size grows large, the predictive content of xt shrinks to zero (assume

that, apart from the local element, the model fits in the framework of the usual classical

normal regression model, with homoskedastic errors, etc.):

yt+1 = β0 +
β1√
T

xt + ut+1, E(xtut+1) = 0, E(u2
t+1) = σ2. (1)

In light of x’s weak predictive content, the forecast from an estimated model relating

yt+1 to a constant and xt (henceforth, the unrestricted model) could be less accurate than a

forecast from a model relating yt+1 to just a constant (the restricted model). Whether that

is so depends on the “signal” and “noise” associated with xt and its estimated coefficient.

Under the local asymptotics incorporated in the DGP (1), the “signal” component is β2
1σ

2
x,

while the “noise” component is σ2. The signal-to-noise ratio is then β2
1σ

2
x/σ2. Given σ2,

higher values of the coefficient on x or the variance of x raise the signal relative to the noise;

given the other parameters, a higher residual variance σ2 increases the noise, reducing the

signal-to-noise ratio.

3



In light of the tradeoff considerations described in the introduction, a combination of

the unrestricted and restricted model forecasts could be more accurate than either of the

individual forecasts. Letting ŷ1,t+1 denote the forecast from the restricted model and ŷ2,t+1

represent the unrestricted model’s forecast (both based on models estimated by OLS with

data through period t), we consider a combined forecast

αtŷ1,t+1 + (1− αt)ŷ2,t+1. (2)

[Under our formulation, the optimal combination weight is updated in real time (at each

forecast point t), as forecasting moves forward in time.] We then analytically determine the

weight α∗t that yields the forecast with lowest expected squared error in period t + 1. Our

formulation allows for the extreme cases in which the restricted model is best (α∗t = 1) or

the unrestricted model is best (α∗t = 0).

As we establish more formally below, the MSE–minimizing (estimated) combination

weight α∗t is a function of the signal–to–noise ratio:

α̂∗t =



1 +





(√
t b̂1

)2
σ̂2

x

σ̂2









−1

, (3)

where b̂1 denotes the coefficient on xt (
√

t b̂1 corresponds to an estimate of the local popu-

lation coefficient β1), σ̂2
x denotes the variance of xt−1, and σ̂2 denotes the error variance of

the unrestricted forecast model, all estimated at time t (for forecasting at t + 1).2 As this

result indicates, if the predictive content of x is such that the signal-to-noise ratio equals

1, then α̂∗t = .5: the MSE–minimizing forecast is a simple average of the restricted and

unrestricted model forecasts.

2.2 The general case: environment

In the general case, the possibility of weak predictors is modeled using a sequence of linear

DGPs of the form (Assumption 1)3

yT,t+τ = x′T,2,tβ
∗
T + uT,t+τ = x′T,1,tβ

∗
1 + x′T,22,t(T

−1/2β∗22) + uT,t+τ , (4)

ExT,2,tuT,t+τ ≡ EhT,t+τ = 0 for all t = 1, ..., T, ...T + P − τ .

2Clements and Hendry (1998) derive a similar result, for the combination of a forecast based on the
unconditional mean and a forecast based on an AR(1) model without intercept, the model assumed to
generate the data.

3The parameter β∗T,t does not vary with the forecast horizon τ since, in our analysis, τ is treated as fixed.
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Note that we allow the dependent variable yT,t+τ , the predictors xT,2,t and the error term

uT,t+τ to depend upon T , the initial forecasting origin. This dependence allows the time

variation in the parameters to influence their marginal distributions. This is necessary if

we want to allow lagged dependent variables to be predictors.

At each origin of forecasting t = T, ...T +P−τ , we observe the sequence {yT,j , x′T,2,j}t
j=1.

Forecasts of the scalar yT,t+τ , τ ≥ 1, are generated using a (k × 1, k = k1 + k2) vector

of covariates xT,2,t = (x′T,1,t, x
′
T,22,t)

′, linear parametric models x′T,i,tβ
∗
i , i = 1, 2, and a

combination of the two models, αtx′T,1,tβ
∗
1 +(1−αt)x′T,2,tβ

∗
2. The parameters are estimated

using OLS (Assumption 2) and hence β̂i,t = arg min t−1 ∑t−τ
s=1 (yT,s+τ − x′T,i,sβi

)2, i = 1, 2,

for the restricted and unrestricted, respectively. We denote the loss associated with the τ -

step ahead forecast errors as û2
i,t+τ = (yT,t+τ − x′T,i,tβ̂i,t)2, i = 1, 2, and û2

W,t+τ = (yT,t+τ −

αtx′T,1,tβ̂1,t− (1−αt)x′T,2,tβ̂2,t)2 for the restricted, unrestricted, and combined, respectively.

The following additional notation will be used. Let HT,i(t) = (t−1 ∑t−τ
s=1 xT,i,suT,s+τ ) =

(t−1 ∑t−τ
s=1 hT,i,s+τ ), BT,i(t) = (t−1 ∑t−τ

s=1 xT,i,sx′T,i,s)
−1, and Bi = limT→∞(ExT,i,sx′T,i,s)

−1

for i = 1, 2 . For UT,t = (h′T,2,t+τ , vec(xT,2,tx′T,2,t)
′)′, V =

∑τ−1
j=−τ+1 Ω11,j , where Ω11,j is

the upper block-diagonal element of Ωj defined below, and ⇒ denotes weak convergence.

For any (m × n) matrix A with elements ai,j and column vectors aj , let: vec(A) denote

the (mn × 1) vector [a′1, a′2, ..., a′n]′; |A| denote the max norm; and tr(A) denote the trace.

Let supt = supT≤t≤T+P . Finally, we define variable selection matrices and a coefficient

vector that appears directly in our key combination results: J = (Ik1×k1 , 0k1×k2)′, J2 =

(0k2×k1 , Ik2×k2)′ and δ = (01×k1 ,β
∗′
22)

′.

To derive our general results, we need two more assumptions (in addition to our assump-

tions (1 and 2) of a DGP with weak predictability and OLS–estimated linear forecasting

models).

Assumption 3: (a) T−1 ∑[rT ]
t=1 UT,tU ′T,t−j ⇒ rΩj where Ωj = limT→∞ T−1 ∑T

t=1 E(UT,tU ′T,t−j)

for all j ≥ 0, (b) Ω11,j = 0 all j ≥ τ , (c) supT≥1,t≤T+P E|UT,t|2q < ∞ some q > 1, (d) The

zero mean triangular array UT,t−EUT,t = (h′T,2,t+τ , vec(xT,2,tx′T,2,t−ExT,2,tx′T,2,t)
′)′ satisfies

Theorem 3.2 of De Jong and Davidson (2000).

Assumption 4: For s ∈ (1, 1 + λP ], (a) αt ⇒ α(s) ∈ [0, 1], (b) limT→∞ P/T = λP ∈ (0,∞).

Assumption 3 imposes three types of conditions. First, in (a) and (c) we require that

the observables, while not necessarily covariance stationary, are asymptotically mean square
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stationary with finite second moments. We do so in order to allow the observables to have

marginal distributions that vary as the weak predictive ability strengthens along with the

sample size but are ‘well-behaved’ enough that, for example, sample averages converge in

probability to the appropriate population means. Second, in (b) we impose the restriction

that the τ -step ahead forecast errors are MA(τ − 1). We do so in order to emphasize the

role that weak predictors have on forecasting without also introducing other forms of model

misspecification. Finally, in (d) we impose the high level assumption that, in particular,

hT,2,t+τ satisfies Theorem 3.2 of De Jong and Davidson (2000). By doing so we not only

insure (results needed in Appendix 1) that certain weighted partial sums converge weakly

to standard Brownian motion, but also allow ourselves to take advantage of various results

pertaining to convergence in distribution to stochastic integrals.

Our final assumption is unique: we permit the combining weights to change with time.

In this way, we allow the forecasting agent to balance the bias-variance tradeoff differently

across time as the increasing sample size provides stronger evidence of predictive ability.

Finally, we impose the requirement that limT→∞ P/T = λP ∈ (0,∞) and hence the duration

of forecasting is finite but non-trivial.

2.3 Theoretical results on the tradeoff

Our characterization of the bias-variance tradeoff associated with weak predictability is

based on
∑T+P−τ

t=T (û2
2,t+τ − û2

W,t+τ ), the difference in the (normalized) MSEs of the unre-

stricted and combined forecasts. In Appendix 1, we provide a general characterization of

the tradeoff, in Theorem 1. But in the absence of a closed form solution for the limiting

distribution of the loss differential (the distribution provided in Appendix 1), we proceed

in this section to focus on the mean of this loss differential.

From the general case proved in Appendix 1, we first establish the expected value of the

loss differential, in the following corollary.

Corollary 1: E
∑T+P

t=T (û2
2,t+τ − û2

W,t+τ )→
∫ 1+λP
1 EξW (s) =

∫ 1+λP
1 (1− (1− α(s))2)s−1tr((−JB1J ′ + B2)V )ds –

∫ 1+λP
1 α2(s)δ′B−1

2 (−JB1J ′ + B2)B−1
2 δds.

This decomposition implies that the bias-variance tradeoff depends on: (1) the duration

of forecasting (λP ), (2) the dimension of the parameter vectors (through the dimension of

δ), (3) the magnitude of the predictive ability (as measured by quadratics of δ), (4) the
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forecast horizon (via V , the long-run variance of hT,2,t+τ ), and (5) the second moments of

the predictors (Bi = limT→∞(ExT,i,tx′T,i,t)
−1).

The first term on the right-hand side of the decomposition can be interpreted as the

pure “variance” contribution to the mean difference in the unrestricted and combined MSEs.

The second term can be interpreted as the pure “bias” contribution. Clearly, when δ = 0

and thus there is no predictive ability associated with the predictors xT,22,t, the expected

difference in MSE is positive so long as α(s) += 0. Since the goal is to choose α(s) so

that
∫ 1+λP
1 EξW (s) is maximized, we immediately reach the intuitive conclusion that we

should always forecast using the restricted model and hence set α(s) = 1. When δ += 0,

and hence there is predictive ability associated with the predictors xT,22,t, forecast accuracy

is maximized by combining the restricted and unrestricted model forecasts. The following

corollary provides the optimal combination weight.4

Corollary 2: The pointwise optimal combining weights satisfy

α∗(s) =
[

1 + s

(
β′22(Ex22,tx′22,t − Ex22,tx′1,t(Ex1,tx′1,t)−1Ex1,tx′22,t)β22

tr((−JB1J ′ + B2)V )

)]−1

. (5)

The optimal combination weight is derived by maximizing the arguments of the integrals

in Corollary 1 that contribute to the average expected mean square differential over the

duration of forecasting — hence our “pointwise optimal” characterization of the weight. In

particular, the results of Corollary 2 follow from maximizing

(1− (1− α(s))2)s−1tr((−JB1J
′ + B2)V )− α2(s)δ′B−1

2 (−JB1J
′ + B2)B−1

2 δ (6)

with respect to α(s) for each s.

As is apparent from the formula in Corollary 2, the combining weight is decreasing in

the marginal ‘signal to noise’ ratio

β′22(Ex22,tx
′
22,t − Ex22,tx

′
1,t(Ex1,tx

′
1,t)

−1Ex1,tx
′
22,t)β22/tr((−JB1J

′ + B2)V ).

As the marginal ‘signal’, β′22(Ex22,tx′22,t − Ex22,tx′1,t(Ex1,tx′1,t)−1Ex1,tx′22,t)β22, increases,

we place more weight on the unrestricted model and less on the restricted one. Conversely, as

the marginal ‘noise’, tr((−JB1J ′+B2)V ), increases, we place more weight on the restricted
4Note that we have dropped the subscript T from the predictors. In our previous notation, this quantity

would be limT→∞(ExT,22,tx
′
T,22,t −ExT,22,tx

′
T,1,t(ExT,1,tx

′
T,1,t)

−1ExT,1,tx
′
T,22,t). For brevity, we omit this

subscript throughout the remainder.
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model and less on the unrestricted model. Finally, as the sample size, s, increases, we place

increasing weight on the unrestricted model.

In the special case in which the signal–to–noise ratio equals 1, the optimal combination

weight is 1/2. In this case, the restricted and unrestricted models are expected to be equally

accurate. For example, at time s = 1, when

β′22(Ex22,tx
′
22,t − Ex22,tx

′
1,t(Ex1,tx

′
1,t)

−1Ex1,tx
′
22,t)β22 = tr((−JB1J

′ + B2)V ), (7)

the expected loss differential EξW (1) = 0 is 0.

A bit more algebra establishes the determinants of the size of the benefits to combination.

If we substitute α∗(s) into (6), we find that Eξ∗W (s) takes the easily interpretable form

tr((−JB1J ′ + B2)V )2

s(sβ′22(Ex22,tx′22,t − Ex22,tx′1,t(Ex1,tx′1,t)−1Ex1,tx′22,t)β22 + tr((−JB1J ′ + B2)V ))
. (8)

This simplifies even more in the conditionally homoskedastic case, in which tr((−JB1J ′ +

B2)V ) = σ2k2. In either case, it is clear that we expect the optimal combination to pro-

vide the most benefit when the marginal ‘noise’, tr((−JB1J ′ + B2)V ), is large or when

the marginal ‘signal’, β′22(Ex22,tx′22,t − Ex22,tx′1,t(Ex1,tx′1,t)−1Ex1,tx′22,t)β22, is small. And

again, we obtain the result that, as the sample size increases, any benefits from combination

vanish as the parameter estimates become increasingly accurate.

Note, however, that the term β′22(Ex22,tx′22,t − Ex22,tx′1,t(Ex1,tx′1,t)−1Ex1,tx′22,t)β22 is

a function of the local parameters β22 and not the global ones we estimate in practice.

Moreover, note that these optimal combining weights are not presented relative to an en-

vironment in which agents are forecasting in ‘real time’. Therefore, for practical use, we

suggest a transformed formula. Let B̂i and V̂ denote estimates of Bi and V , respectively,

based on data through period t. If we let the estimated global parameter β̂22 denote an

estimate of the local parameter T−1/2β∗22 and set s = t/T , we obtain the following real time

estimate of the pointwise optimal combining weight:5

α̂∗t =



1 + t



 β̂′22(t−1 ∑t
j=1 x22,jx′22,j − (t−1 ∑t

j=1 x22,jx′1,j)B̂1(t−1 ∑t
j=1 x1,jx′22,j))β̂22

tr((−JB̂1J ′ + B̂2)V̂ )








−1

.

(9)

5We estimate Bi with B̂i = (t−1
∑t

j=1
xi,jx

′
i,j)

−1, where xi,t is the vector of regressors in the forecasting

model (supposing the MSE stationarity assumed in the theoretical analysis). In the Monte Carlo experiments,
we impose conditional homoskedasticity in computing the noise term as tr((−JB̂1J

′+ B̂2)V̂ ) = k2σ̂
2, where

k2 is the number of additional regressors in the unrestricted model and σ̂2 is the estimated residual variance
of the unrestricted forecasting model estimated with data from 1 to t. In the empirical applications, we
allow for conditional heteroskedasticity and compute the noise term using V̂ = t−1

∑t

j=1
û2

2,jx2,jx
′
2,j .
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In doing so, though, we acknowledge that the estimates of the global parameters are not

consistent estimates of the local parameters on which our theoretical derivations (Corollary

2 and (9)) are based. The local asymptotics allow us to derive closed–form solutions for

the optimal combination weights, but local parameters cannot be estimated consistently.

We therefore simply use global magnitudes to estimate (inconsistently) the assumed local

magnitudes and optimal combining weights. Below we use Monte Carlo experiments and

empirical examples to determine whether the estimated quantities perform well enough to

be a valuable tool for forecasting.

Conceptually, our proposed combination (9) might be expected to have some relationship

to Bayesian methods. In the very simple case of the example of section 2.1, the proposed

combination forecast corresponds to a forecast from an unrestricted model with Bayesian

posterior mean coefficients estimated with a prior mean of 0 and variance proportional

to the signal–noise ratio.6 More generally, our proposed combination could correspond to

the Bayesian model averaging considered in such studies as Wright (2003) and Stock and

Watson (2005). Indeed, in the scalar environment of Stock and Watson (2005), setting

their weighting function to t-stat2/(1 + t-stat2) yields our combination forecast. In the

more general case, we have been unable to derive a simple shrinkage prior that would

yield a Bayesian model averaging forecast equal to our combination forecast. However,

there is likely to be some prior (that is, some specification of the shrinkage parameter φ of

Wright (2003)) that makes a Bayesian average of the restricted and unrestricted forecasts

very similar or identical to the combination forecast based on (9). Note, however, that the

underlying rationale for Bayesian averaging is quite different from the combination rationale

developed in this paper. Bayesian averaging is generally founded on model uncertainty. In

contrast, our combination rationale is based on the bias–variance tradeoff associated with

parameter estimation error, in an environment without model uncertainty.

Instead of using our approximation (9) to the optimal combination, one might instead

consider using a Bates and Granger (1969) combination approach, based on regression

estimates. That is, consider that at time T we estimate the optimal combining weight using

a sequence of N existing pseudo-out-of-sample forecast errors ûi,t+τ = (yT,t+τ − x′T,i,tβ̂i,t),

t = R....R+N = T−τ , and the OLS estimated regression û2,t+τ = α(û2,t+τ−û1,t+τ )+ηt+τ .7

6Specifically, using a prior variance of the signal–noise ratio times the OLS variance yields a posterior
mean forecast equivalent to the combination forecast.

7This combination regression is obtained from the general regression yT+τ = αBGŷ1,T+τ + (1 −
αBG)ŷ2,T+τ + ηt+τ by: (1) subtracting ŷ2,T+τ from both sides and combining the remaining terms on
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Under Assumptions 1-4, we can show that the resulting estimator α̂BG is inappropriate when

the forecasts are from nested rather than non-nested models. In particular, if we define

limT→∞N/R = π ∈ (0,∞), let W0 and W1 denote independent (k × 1) standard normal

vectors, and (for analytical tractability) restrict attention to fixed scheme pseudo-out-of-

sample forecasts (so that β̂i,t = β̂i,R t = R....R + N = T − τ ), we obtain the following

result on the limiting behavior of the estimated combining coefficient from a Bates–Granger

regression.

Proposition 1: α̂BG →d 1−π−1
(

(W0+ π
1+π V −1/2B−1

2 δ)′[V 1/2(−JB1J ′+B2)V 1/2](W1+ 1
1+π V −1/2B−1

2 δ)

(W1+ 1
1+π V −1/2B−1

2 δ)′[V 1/2(−JB1J ′+B2)V 1/2](W1+ 1
1+π V −1/2B−1

2 δ)

)
.

Proposition 1 establishes that a Bates–Granger regression yields a combination estimate

that is not only inconsistent for our optimal combination weight but also converges in

distribution rather than in probability. In unreported simulations of DGP 1 described in

Section 3, we find that while the support of the asymptotic distribution of α̂BG contains

the value of our optimal combining weight, it has a large variance, often yielding values of

α̂BG that are much larger or much smaller than the optimal combining weight derived in

Corollary 2. The apparent suboptimality of this approach reflects the fact that the original

motivation for the regression was based upon combination for non-nested rather than nested

models. As shown in Clark and McCracken (2001) and McCracken (2004), out-of-sample

methods designed for the comparison of non-nested models need not be applicable for the

comparison of nested models.

3 Monte Carlo Evidence

We use Monte Carlo simulations of bivariate data-generating processes to evaluate the finite–

sample performance of the combination methods described above. In these experiments, the

DGPs relate the predictand y to lagged y and lagged x, with the coefficients on lagged x set

at various values. Forecasts of y are generated with the combination approaches considered

above, along with some related methods that are used or might be used in practice, such

as Bayesian estimation. Performance is evaluated using simple summary statistics of the

distribution of each forecast’s MSE: the average MSE across Monte Carlo draws (medians

yield similar results), and the probability of equaling or beating the restricted model’s

forecast MSE.

the right–hand side; (2) substituting û2,t+τ for yT+τ − ŷ2,T+τ ; and (3) substituting û2,t+τ − û1,t+τ for
ŷ1,T+τ − ŷ2,T+τ .
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3.1 Experiment design

In light of the considerable practical interest in the out–of–sample predictability of inflation

(see, for example, Stock and Watson (1999, 2003), Atkeson and Ohanian (2001), Fisher,

et al. (2002), Orphanides and van Norden (2005), and Clark and McCracken (2005b)),

we present results for DGPs broadly based on estimates of quarterly inflation models. In

particular, we consider models based on the relationship of the change in core PCE inflation

to lags of the change in inflation, the output gap, and, in some cases, the growth rate of

unit labor costs and import price inflation.8 With prior results in the inflation forecasting

literature sufficiently mixed as to suggest the predictive content of the output gap and

other variables may be weak, we consider various values of the coefficients (corresponding

to our theoretical β22) on these variables, ranging from zero to quite large values. We

compare forecasts from an unrestricted model that corresponds to the DGP to forecasts

from a restricted model that takes an AR form (that is, a model that drops from the

unrestricted model all but the constant and lags of the dependent variable). Although not

presented in the interest of brevity, we obtained qualitatively similar results with a DGP

based on estimates of a model relating the (quarterly) excess return on the S&P 500 to

the dividend–price ratio and a short–term (relative) interest rate (in those applications, the

null forecasting model related y to just a constant).

In each experiment, we conduct 10,000 simulations of data sets of 160 observations (not

counting the initial observations necessitated by the lag structure of the DGP). In our

reported results, with quarterly data in mind, we use an “in–sample” size of T = 80, and

evaluate forecast accuracy over forecast periods of various lengths: P = 1, 20, 40, and 80,

corresponding to λP = .0125, .2, .5, and 1. We obtained very similar results with T = 120

and have omitted those results in the interest of brevity.

The first DGP, based on the empirical relationship between the change in core inflation

(yt) and the output gap (x1,t), takes the form

yt = −.40yt−1 − .16yt−2 + b11x1,t−1 + ut

x1,t = 1.18x1,t−1 − .06x1,t−2 − .20x1,t−3 + v1,t (10)

var
(

ut

v1,t

)
=

(
.73
.02 .59

)
.

We consider various experiments with different settings of b11, the coefficient on the “output
8See Appendix 2’s description of applications 6 and 7 for data details.
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gap.” As becomes clear when we describe below the competing forecasting models, b11

corresponds to our theoretical construct β22/
√

T . The baseline value of b11 is the one that,

in population, makes the null and alternative models equally accurate (in expectation) in

forecast period T +1 — the value that satisfies (7). Given the population moments implied

by the DGP parameterization, this value is b11 = .327/
√

T = .037. The second setting

we consider is the empirical value: b11 = .10. To illustrate how each method fares if the

predictive content of x1,t is truly non–existent, we also report results from an experiment

with b11 = 0.

The second DGP, based on estimated relationships among inflation (yt), the output gap

(x1,t), growth in unit labor costs (x2,t), and import price inflation (x3,t), takes the form:

yt = −.40yt−1 − .16yt−2 + b11x1,t−1 + b21x2,t−1 + b22x2,t−2 + b31x3,t−1 + b32x3,t−2 + ut

x1,t = 1.18x1,t−1 − .06x1,t−2 − .20x1,t−3 + v1,t

x2,t = 1.54x1,t−1 − 1.13x1,t−2 + .31x2,t−1 + .37x2,t−2 + v2,t (11)

x3,t = .39x2,t−1 − .06x2,t−2 + .55x3,t−1 + .05x3,t−2 + v3,t

var





ut

v1,t

v2,t

v3,t



 =





.73

.02 .59

.36 −1.72 11.90
1.37 .43 1.10 27.14



 .

As with DGP 1, we consider experiments with three different settings of the set of bij

coefficients, which correspond to the elements of β22/
√

T . One setting is based on empirical

estimates: b11 = .10, b21 = .03, b22 = −.02, b31 = .05, b32 = −.03. We take as the baseline

experiment one in which all of these empirical values of the bij coefficients are multiplied

by a constant less than one, such that, in population, the null and alternative models are

expected to be equally accurate in forecast period T + 1. With T = 80, this multiplying

constant is .527. Finally, we also report results for a DGP with all of the bij coefficients set

to zero.

3.2 Forecast approaches

In the case of DGP 1, forecasts of yt+1, t = T, . . . , T + P , are formed from various combi-

nations of estimates of the following forecasting models:

yt = δ0 + δ1yt−1 + δ2yt−2 + u1,t (12)

yt = γ0 + γ1yt−1 + γ2yt−2 + γ3x1,t−1 + u2,t. (13)
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In the case of DGP 2, the unrestricted forecasting model is augmented to include x2,t−1,

x2,t−2, x3,t−1, and x3,t−2:

yt = γ0 + γ1yt−1 + γ2yt−2 + γ3x1,t−1 + γ4x2,t−1 + γ5x2,t−2 + γ6x3,t−1 + γ7x3,t−2 +u2,t. (14)

Note that, with these specifications, k2 = 1 for DGP 1 and k2 = 5 for DGP 2.

The forecasts or methods we consider, detailed in Table 1, include those described above,

as well as some natural alternatives. In particular, we examine the accuracy of forecasts

from: (1) OLS estimates of the restricted model (12); (2) OLS estimates of the unrestricted

model ((13) in DGP 1 simulations and (14) in DGP 2 simulations); (3) the “known” optimal

linear combination of the restricted and unrestricted forecasts, using the weight implied by

equation (8) and population moments implied by the DGP; (4) the estimated optimal linear

combination of the restricted and unrestricted forecasts, using the weight given in (9) and

estimated moments of the data; and (5) a simple average of the restricted and unrestricted

forecasts (as noted above, weights of 1/2 are optimal if the signal associated with the x

variables equals the noise, making the models equally accurate at T + 1).

We also consider forecasts based on common model–selection procedures applied as

forecasting moves forward in time. One such approach, suggested in Bossaerts and Hillion

(1999) and Inoue and Kilian (2004b), is to use the model with a lower SIC score as of

time t to forecast yt+1. That is, at each forecast origin t, estimate both the restricted and

unrestricted models, and then use the model with the lower SIC score to construct the t+1

forecast. We consider this real–time SIC approach, as well as a corresponding real–time

AIC method. Many studies, such as Marcellino, Stock, and Watson (2004) and Orphanides

and van Norden (2005), have similarly used the AIC or SIC to determine the lag orders of

forecasting models.

Finally, we also consider select Bayesian forecasting methods that may be seen as nat-

ural alternatives to the combination methods proposed in this paper. Doan, Litterman,

and Sims (1984) suggest that conventional Bayesian estimation (specifically, the prior) pro-

vides a flexible method for balancing the tradeoff between signal and parameter estimation

noise. Accordingly, we construct one forecast based on Bayesian estimation of the unre-

stricted forecasting model ((13) in DGP 1 simulations and (14) in DGP 2 simulations),

using Minnesota–style priors as described in Litterman (1986). For our particular applica-

tions, we use a prior mean of zero for all coefficients, with prior variances that are tighter

for longer lags than shorter lags and tighter for lags of xi,t than yt. In the notation of
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Litterman, we use the following parameter settings in determining the prior variances: λ =

.2 and θ = .5.9

We construct another forecast by applying Bayesian model averaging (BMA) to the

restricted and unrestricted models, using the BMA approach of Wright (2003). In particular,

we use Bayesian methods simply to weight OLS estimates of the two models. The prior

probability on each model, Prob(Mi), i = 1,2, is just 1/2. In calculating the posterior

probabilities of each model, Prob(Mi|data), we set the prior on the coefficients to zero. At

each forecast origin t, we then calculate the posterior probability of each model using

Prob(Mi|data) =
Prob(data|Mi)× Prob(Mi)∑
i Prob(data|Mi)× Prob(Mi)

(15)

Prob(data|Mi) ∝ (1 + φ)−pi/2S−(t+1)
i

φ = parameter determining rate of shrinkage toward the restricted model

pi = the number of explanatory variables in model i

S2
i = (Y −XiΓ̂i)′(Y −XiΓ̂i) +

1
1 + φ

Γ̂′iX
′
iXiΓ̂i

Xi = matrix of regressors in model i

Γ̂i = vector of OLS estimates of the coefficients of model i.

We report results for two different settings of the shrinkage parameter φ, one relatively high

(φ = 2) and one low (φ = .2). Lower values of φ are associated with greater shrinkage

toward the restricted model.

3.3 Simulation results

In our Monte Carlo comparison of methods, we primarily base our evaluation on average

MSEs over a range of forecast samples. For simplicity, in presenting average MSEs, we

only report actual average MSEs for the restricted model (12). For all other forecasts, we

report the ratio of a forecast’s average MSE to the restricted model’s average MSE. To

capture potential differences in MSE distributions, we also present some evidence on the

probabilities of equaling or beating the restricted model.

3.3.1 Simple combination forecasts

We begin with the case in which the coefficients bij (elements of β22) on the lags of xit

(elements of x22) in the DGPs (10) and (11) are set such that the restricted and unrestricted
9For the intercept of each model, we follow the example of Robertson and Tallman (1999) and use a prior

mean of 0 and standard deviation of .3 times the standard error of an estimated AR model for y.
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model forecasts for period T+1 are expected to be equally accurate — because the signal and

noise associated with the xit variables are equalized. In this setting, the optimally combined

forecast should, on average, be more accurate than either the restricted or unrestricted

forecasts.

The average MSE results for DGPs 1 and 2 reported in the left panels of Table 2 confirm

the theoretical implications. With DGP 1, the ratio of the unrestricted model’s average MSE

to the restricted model’s average MSE is very close to 1.000 for all forecast samples. The

same is true with DGP 2, except that, with a forecast sample of just P = 1, the unrestricted

model’s average squared forecast error is slightly larger than the restricted model’s (MSE

ratio of 1.013).

A combination of the restricted and unrestricted forecasts has a lower average MSE,

although only trivially so in the DGP 1 experiment, in which the restricted model omits only

one variable (in the DGP 2 experiment, though, the restricted model omits five variables).

Using the known optimal combination weight α∗t yields an MSE ratio of about .995 in the

case of DGP 1 and .975 in the case of DGP 2. These gains are in line with those indicated

by the theoretical results in section 2. For these particular experiments (in which the

forecast errors are conditionally homoskedastic and the restricted and unrestricted models

are expected to be equally accurate as of T ), the expected gain (8) as a percentage of the

residual variance (σ2) simplifies to k2
2s . The resulting theoretic gains are 0.5 percent for

DGP 1 and 2.5 percent for DGP 2, in line with the gains in the experiments.

Not surprisingly, having to estimate the optimal combination weight tends to slightly

reduce the gains to combination. For example, in the case of DGP 2 and P = 40, the

MSE ratio for the estimated optimal combination forecast is .980, compared to .973 for the

known optimal combination forecast. The simple average of the restricted and unrestricted

forecasts performs about as well as the known optimal combination, because, with signal

= noise at least as of period T , the optimal combination weight is 1/2. As forecasting

moves forward in time, though, the known optimal combination weight declines, because

as more and more data become available for estimation, the signal-to-noise ratio rises (e.g.,

in the case of DGP 2, the known optimal weight for the forecast of the 80th observation

in the prediction sample is about .33). But the declines aren’t great enough to cause the

performance of the simple average to deteriorate materially relative to the known optimal

combination, for the forecast samples considered.
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Combination continues to perform well in DGPs with larger bij (β22) coefficients — that

is, coefficient values set to those obtained from empirical estimates of inflation models. With

these larger coefficients, the signal associated with the xit (x22) variables exceeds the noise,

such that the unrestricted model is expected to be more accurate than the restricted model.

In this setting, too, our asymptotic results imply the optimal combination forecast should

be more accurate than the unrestricted model forecast, on average. However, the gains

to combination should be smaller than in DGPs with smaller bij coefficients. The results

for DGPs 1 and 2 reported in the right panels of Table 2 broadly confirm these theoretical

implications, although, in some cases, the estimated optimal combination’s average accuracy

is no greater than the unrestricted model’s average accuracy. Compared to the restricted

model’s MSE, the unrestricted model’s average MSE is about 7 percent lower in the case of

DGP 1 (MSE ratio of about .93) and 11-12 percent lower in the case of DGP 2 (MSE ratio

of .88-.89).

Combination using the known optimal combination weight α∗t improves accuracy further,

more noticeably in the DGP 2 experiments, which involve a more richly parameterized

unrestricted forecasting model. For example, with DGP 2 and P = 40, the MSE ratio

is .874 for the known α∗t –combined forecast, compared to the unrestricted forecast’s MSE

ratio of .884. In these experiments, the combination forecast based on the estimated α∗t

performs about as well as that based on the known α∗t : in the same example, the MSE ratio

for the opt. combination: α̂∗t forecast is .878. Finally, combination in the form of a simple

average of the restricted and unrestricted forecasts yields a forecast that is about as accurate,

although not quite, as the unrestricted model’s forecast or the optimally combined forecast.

For example, with DGP 2 and P = 40, the MSE ratio of the simple average forecast is

.889, compared to .878 for the estimated optimal combination and .884 for the unrestricted

model.

Unreported results for DGP 1 with b11 = .20 — with an “output gap” coefficient twice

its estimated magnitude — confirm that the same basic patterns hold as the predictive

content of the variables of interest becomes quite high. But, not surprisingly, as signal

becomes high relative to noise, the performance of a simple average forecast deteriorates

(the average forecast has an MSE ratio of about .84, while the unrestricted and optimal

combination forecasts have MSE ratios of about .8). Of course, when the signal–to–noise

ratio is high, the optimal combination weight is close to 1, so a simple average does not
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perform as well.

With predictive content often found to be weak in many practical settings, the coeffi-

cients of interest could actually be zero (zero signal), rather than just close to zero (small,

non-zero signal). Accordingly, in Table 3, we report results for DGPs in which all bij coef-

ficients (β22) equal 0. In this setting, of course, the restricted model will be more accurate

than the unrestricted model, in terms of average MSE, with the accuracy difference increas-

ing in the number of variables in x22. Indeed, as shown in the table, the average MSE of

the unrestricted model is 1-2 percent higher than that of the restricted model in the case of

DGP 1 and 5-8 percent higher in the case of DGP 2. The estimated optimal combination

forecast is considerably better than the unrestricted forecast, although not quite as good as

the restricted forecast. For example, with P = 40, the MSE ratio of the estimated optimal

combination forecast is 1.006 for DGP 1 and 1.019 for DGP 2. The simple average forecast

is slightly better than the optimal combination, with MSE ratios of 1.003 (DGP 1) and

1.015 (DGP 2) for P = 40. Thus, even if the variables of interest have no true predictive

content, combination can greatly limit the losses relative to the optimal restricted model

forecast.

In addition to helping to lower the average forecast MSE, combination of restricted and

unrestricted forecasts helps to tighten the distribution of relative accuracy — for example,

the MSE relative to the MSE of the restricted model. In particular, the results in Tables

4 and 5 indicate that combination — especially simple averaging — often increases the

probability of beating the MSE of the restricted model, often by more than it lowers average

MSE. As shown in Table 4, for instance, with DGP 1 parameterized such that signal = noise

as of time T (with b11 = .037), the frequency with which the unrestricted model’s MSE is

less than the restricted model’s MSE is 42.2 percent for P = 40. The frequency with which

the known optimal combination forecast’s MSE is below the restricted model’s MSE is 49.3

percent. Although the estimated combination does not fare as well (probability of 40.1

percent in the sample example), a simple average fares even better, beating the MSE of the

restricted model in 50.2 percent of the simulations. By this probability metric, the simple

average also fares well in the experiment with DGP 1 and b11 = .10 (signal > noise). Again

using the P = 40 example, the probabilities of beating the restricted model’s MSE are 77.2,

78.7, and 87.3 percent, respectively, for the unrestricted, estimated optimal combination,

and simple combination forecasts. Results in Tables 4 and 5 for other experiments (DGP
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1 with b11 = 0, DGP 2 with all bij = 0 and coefficients scaled to make signal=noise, and

DGP 2 with empirical coefficients) confirm the same basic patterns: (i) compared to the

unrestricted forecast, simple averaging improves the chances of beating the accuracy of

the restricted model’s forecast; (ii) although the known optimal combination can also offer

a material gain (not always as large as simple combination), estimating the combination

weight reduces the gain, sometimes materially.

3.3.2 Comparison to other methods

As noted above, our proposed combination procedure has a number of natural alternatives,

related to procedures used in practice: forecasting yt+1 with the period t–estimated model

(restricted or unrestricted) that the SIC or AIC indicates to be superior; Bayesian shrinkage

of estimates of the unrestricted model, using BVAR techniques; or Bayesian model averaging

of the restricted and unrestricted models.

Of these alternative methods, the Bayesian approaches seem to work best in our ex-

periments — and about as well as our simple combination approaches. BVAR estimation

delivers an average MSE ratio that is quite similar to those obtained with our feasible com-

bination approaches. In the case of DGP 1 with b11 = .10 (so signal > noise) and P=40,

the MSE ratio of the BVAR forecast is .932, compared to the estimated optimal combi-

nation and simple average ratios of .936 and .945 (Table 2). In the case of DGP 2 with

estimated bij coefficients (signal > noise) and P=40, the BVAR’s MSE ratio is .889, while

the estimated combination forecast’s ratio is .878 and the simple average’s is .889 (Table

2). With DGP 2’s bij coefficients set to 0, the BVAR forecast’s average MSE is 1.016,

about the same as those for the estimated optimal and simple average forecasts (Table 3).

In terms of probability of beating the restricted model in MSE, the BVAR generally falls

somewhere between the estimated optimal combination and the simple average. But when

the bij coefficients are truly zero, the BVAR typically has the highest probability of beating

the restricted model (but still less than 50 percent).

The BMA approaches also perform comparably to our proposed simple combination

approaches, although more so in terms of average MSE than probability of beating the

restricted model’s MSE. For example, using DGP 2 with bij coefficients set to make signal

equal to noise, and P=40, the BMA: φ = .2 (φ = 2) forecast’s MSE ratio is .977 (.988),

compared to the ratios of .980 for the estimated combination and .973 for the simple average

(Table 2). With P=40, the probability of beating the restricted model’s MSE is 62.2 percent
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for the φ=.2 BMA forecast and 53.8 percent for the φ=2 forecast, compared to the BVAR

and simple average probabilities of 62.4 and 67.8 percent (Table 5). Clearly, using more

shrinkage in the Bayesian model averaging (lower φ) tightens the relative MSE distribution.

In the case of DGP 2 with estimated bij coefficients (signal > noise) and P=40, the BMA:

φ = .2 (φ = 2) forecast’s MSE ratio is .879 (.886), compared to the ratios of .889, .878,

and .889 for the BVAR, estimated combination, and simple average forecasts, respectively

(Table 2). The likelihoods of beating the accuracy of the restricted model follow the same

ordering given in the prior example: simple average (94.0), BVAR (90.3), BMA: φ = .2

(88.1), and BMA: φ = 2 (81.5) (Table 5).

Although the SIC and AIC model selection methods work well in some instances, overall,

these methods that base the forecast at t + 1 on a single model selected at each t don’t

perform as well as the simple combination and Bayesian methods. In some settings, to

be sure, these selection methods can perform as well as the combination methods, but the

selection methods are never better, and they can be worse.10 Consider, for example, the

DGP 2 simulations, with P=40. In the (Table 2) experiment with the bij coefficients set to

make signal equal to noise, the AIC approach yields an average MSE ratio of 1.006. The SIC

approach, which selects the unrestricted model with a lower frequency, yields a slightly lower

MSE ratio, of 1.002. But both methods fall short of the simple average forecast, which has

an average MSE ratio of .973. In the (Table 2) experiment with estimated bij coefficients

(signal > noise), the AIC often results in the selection of the unrestricted model, so it

yields an average MSE ratio (.890) that is essentially the same as that of the unrestricted

model (.884) and simple average forecast (.889). Because the more parsimonious SIC less

frequently selects the unrestricted model, the SIC yields a higher average MSE ratio, of

.947.

Overall, the Monte Carlo evidence shows simple forecast combination and Bayesian

shrinkage to be useful tools for improving forecast accuracy. Simple combination — either

in the form of an optimal combination estimated with the approach developed in section

2 or an average — improves average forecast accuracy. Combination, especially simple

averaging, can also significantly increase the odds of improving on the accuracy of the

benchmark restricted model. Bayesian shrinkage, especially of the type associated with

with Minnesota–style BVAR model estimation, offers comparable benefits.
10In line with our findings, Cecchetti (1995) reports that, across a range of bivariate inflation models,

in–sample SIC values have little correlation with forecast RMSEs.

19



4 Empirical Applications

To evaluate the empirical performance of the various forecast methods, we follow the spirit

of Stock and Watson (1996, 2003, 2005) in considering a wide range of applications and

forecast performance over two periods, 1978-91 and 1992-2004. For a number of the appli-

cations, other studies have found some evidence of weak predictability of the information

included in an unrestricted model of interest but not a benchmark restricted model. In

line with common empirical practice (see, for example, the aforementioned work of Stock

and Watson), our presented results are simple MSEs for one-step ahead forecasts, presented

in the form of ratios relative to the restricted model’s MSE. We consider the same fore-

cast methods included in the Monte Carlo analysis, except that, by necessity, we drop the

combination forecast based on the known optimal weight.

4.1 Applications

The predictands in the 12 applications listed below are widely–studied, broad economic

indicators for the United States. We describe below the specification of each unrestricted

forecasting model (although not mentioned explicitly below, all models include a constant).

Unless otherwise noted, the restricted model takes the form of an AR model, using the lag

order of the unrestricted model. As the list below indicates, the applications include both

monthly and quarterly examples. Appendix 2 provides additional detail on the data and

estimation samples.

1. Forecasting monthly growth in industrial production with six lags of production and
six lags of the Federal Reserve Bank of Chicago’s factor index of the national business
cycle (examples: Stock and Watson (2002, 2005) and Shintani (2005)).11

2. Predicting monthly growth in real disposable personal income using models of the
form described in (1) (same examples).

3. Predicting monthly growth in real manufacturing and trade sales using models of the
form described in (1) (same examples).

4. Forecasting monthly growth in employment using models of the form described in (1)
(same examples).

5. Forecasting the change in the monthly unemployment rate with six lags, six lags of new
claims for unemployment insurance, and six lags of continuing claims for insurance

11For this and the other three factor index applications, including one lag of three factors rather than six
lags of just the first factor yields qualitatively similar results.
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(examples: Montgomery, et al. (1998) and Gavin and Kliesen (2002)).

6. Predicting the change in quarterly core PCE inflation with two lags and one lag of the
output gap, defined as the log of the ratio of actual GDP to the CBO’s estimate of
potential GDP (examples: Stock and Watson (1999, 2003), Brave and Fisher (2004),
and Clark and McCracken (2005b)).

7. Predicting the change in quarterly core PCE inflation with two lags, one lag of the
output gap (defined as above), two lags of growth in unit labor costs, and two lags of
import price inflation (examples: Mehra (1990) and Brayton, et al. (1999)).

8. Forecasting quarterly GDP growth with a VAR(2) in GDP growth, the log con-
sumption/GDP ratio, growth in aggregate hours worked, the change in core PCE
inflation, and the change in the three-month Treasury bill rate (examples: Litter-
man (1986), Rotemberg (1996), Rotemberg and Woodford (1996), and Bernanke and
Boivin (2003)).

9. Predicting the change in the three-month Treasury bill rate with a VAR(2) in the
same variables.

10. Forecasting the quarterly excess return on the S&P 500 with one lag of the dividend–
price ratio and one lag of a quarterly risk–free interest rate relative to its average
over the prior year (examples: Pesaran and Timmermann (2002) and Campbell and
Thompson (2005)). In this case, the restricted model includes just a constant.

11. Forecasting the monthly change in the U.S. dollar-Swiss franc exchange rate with
interest rate differentials at 1, 3, 6, and 12 months (examples: Clarida and Taylor
(1997) and Clarida, et al. (2003)). The restricted model includes just a constant.

12. Forecasting the monthly change in the U.S. dollar-U.K. sterling exchange rate with
interest rate differentials at 1, 3, 6, and 12 months (same examples).

4.2 Results

In one broad respect, the application results in Table 6 seem reasonably reflective of patterns

common in published forecasting research: across the applications, the variables included

in the unrestricted model but not the restricted only sometimes improve forecast accuracy.

Across the 24 cases represented in Table 6 (12 applications × two sample periods), the

unrestricted model’s MSE is lower in 13 of them (in the one case in which the reported MSE

ratio is 1.000, the unrestricted model’s MSE is actually a bit lower than the restricted’s).

In some cases, such as the 1978-91 employment growth application, the unrestricted model

is much better than the restricted, with an MSE ratio of .827. In other cases, such as the
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1992-04 stock return application, the unrestricted model is much worse, with an MSE ratio

of 1.175.

Consistent with the Monte Carlo evidence, the application results suggest that simple

forecast combination and Bayesian shrinkage generally improve forecast accuracy, while the

forecast model selection approaches (real-time SIC and AIC) have more mixed consequences.

In all 24 cases, the estimated optimal combination forecast is effectively as good as or better

than the unrestricted model forecast, in terms of MSE. For the most part, the instances in

which the estimated optimal combination is materially better than the unrestricted forecast

are those in which the unrestricted model is inferior to the restricted — examples include

disposable income over 1978-91 (unrestricted and optimal combination MSE ratios of 1.140

and 1.087) and GDP growth over 1992-2004 (MSE ratios of 1.066 and 1.034). But there are

instances in which the combination improves upon an unrestricted forecast that is better

than the restricted model’s forecast, such as with GDP growth over 1978-91 (unrestricted

and optimal combination MSE ratios of .849 and .809).

By various criteria, a simple average seems to be even better than the estimated optimal

combination. Of the 24 cases covered in Table 6, the simple average forecast has the lowest

MSE in seven of them (as we detail below, by this simple count, only the BVAR forecast

fares as well) — note that, for each case, the best MSE performance is distinguished by

a bold font. In general, when the unrestricted or optimal combination forecast is more

accurate than the restricted model’s forecast, the simple average generally does just about

as well. For example, for 1978-91 forecasts of employment growth, the MSE ratio of the

simple combination is .847, compared to the MSE ratios of .832 for the unrestricted forecast

and .826 for the estimated optimal combination. For 1978-91 forecasts of inflation based on

the output gap, unit labor costs, and import price inflation, the simple average approach

yields an MSE ratio of .953, compared to the unrestricted model’s MSE ratio of .973 and

the optimal combination’s ratio of .975. The greater advantage of the simple average comes

in those cases in which the restricted forecast beats the unrestricted model’s projection. To

again use the disposable income example, over 1978-91 the simple average forecast’s MSE

ratio is 1.021, well below that of the optimal combination’s 1.066 and unrestricted model’s

1.140. The same applies in the case of GDP growth over 1992-2004 (simple average MSE

ratio of .972, compared to 1.032 (optimal combination) and 1.082 (unrestricted)).

Some Bayesian methods perform about as well as simple forecast combination. In our
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particular results, BVAR estimation fares better than Bayesian model averaging, although

BMA with the higher degree of shrinkage (φ = .2) may be seen as comparable. Of course, it

is possible that using other shrinkage settings could improve the BMA outcomes (although

the same applies to our BVAR implementation, in which we have considered a single, pre–

determined setting of the priors). Of Table 6’s 24 cases, the BVAR forecast (like the simple

average forecast) yields the lowest MSE in seven of them. In several of these cases, the

BVAR forecast materially improves on the unrestricted and simple average forecasts, as well

as the restricted forecast (disposable income, 1978-91; unemployment, 1978-91; and T-bill

rate, 1978-91 and 1992-04). Like the simple average, in those cases in which the restricted

forecast is more accurate than the unrestricted, the BVAR forecast’s MSE is reasonably

comparable to the restricted forecast’s. In the case of disposable income forecasts for 1978-

91, the BVAR forecast’s MSE ratio is .946, compared to the simple average’s ratio of 1.021

and the unrestricted’s 1.140. For 1978-91 forecasts of the dollar–Swiss franc exchange rate,

the BVAR yields an MSE ratio of 1.036, compared to those of 1.034 for the simple average

and 1.105 for the unrestricted forecast.

Of the two BMA forecasts, the projection using higher shrinkage (φ = .2) is always

(in effect) at least as good as the projection using lower shrinkage (φ = 2). This better

BMA forecast is sometimes about as good as or better than the BVAR (examples: in-

dustrial production, 1992-04; and employment, 1978-91), but sometimes not as good, and

sometimes quite inferior (disposable income, 1978-91; and unemployment, 1992-04). Simi-

larly, the better BMA forecast sometimes matches or beats the simple average (for instance,

manufacturing and trade sales, 1992-04) and sometimes falls short (stock returns, 1992-04).

As to the model selection methods (SIC, etc.), our reading of the application evidence

is that, on balance, these methods that base the forecast at t+1 on a single model selected

at each t don’t perform as well as the simple combination and Bayesian methods. Take, for

example, the 1978-91 forecasts of growth in industrial production. The forecasts derived

from AIC model selection are nearly as accurate as the unrestricted model’s forecast: the

AIC yields an MSE ratio of .918, compared to the unrestricted model’s ratio of .889 and the

simple average forecast’s MSE ratio of .897. In these cases, the AIC usually, but not always,

selects the unrestricted model. The forecasts derived from SIC selection are less accurate,

with a MSE ratio of 1.024, because the more parsimonious SIC select the unrestricted

model with a lower frequency. However, in the exchange rate applications — cases in which
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predictive content appears to be especially weak — the model selection methods, especially

the SIC, fare better, because they virtually always select the restricted model.

To more formally summarize the performance of the various methods, we compare across

the 24 cases in Table 6 each method’s MSE against the forecast MSE that is best in each

case. That is, for each case, we determine the lowest MSE, and then, for each method, form

the ratio of its MSE to the lowest MSE. For the resulting 24 MSE ratios, we then tabulate

the mean, median, standard deviation, and spread between the 90th and 10th percentiles.

Our idea is that, for a forecast method to be recommended for practical use, it should be

relatively close, on average, to the best forecast, and rarely deviate too much from the best

forecast.

The comparison statistics in Table 7 confirm that, across our applications, the simple

average and BVAR forecasts perform best. On average, the simple average forecast’s MSE is

just 2.5 percent larger than the best forecast’s MSE; the BVAR’s forecast is, on average, 3.0

percent larger than the best MSE. The dispersion of these two forecast approaches around

the best forecast is also relatively low, with a 90-10%ile spread of 7.5 percent (simple

average) and 7.3 percent (BVAR). All of the other forecasts have higher average MSE

ratios and suffer more dispersion relative to the best forecast. For example, the estimated

optimal combination forecast’s MSE exceeds the best MSE by an average of 4.3 percent,

with a dispersion of 12.0 percent. The restricted and unrestricted forecasts yield MSEs

that exceed the best MSE by an average of 8.4 and 6.9 percent, respectively. Finally, the

forecasts based on SIC and AIC model selection yield MSEs that exceed the best MSE by

an average of 7.1 and 7.6 percent, respectively, with dispersion of roughly 17-19 percent.

5 Conclusion

As reflected in the principle of parsimony, when some variables are truly but weakly related

to the variable being forecast, having the additional variables in the model may detract

from forecast accuracy, because of parameter estimation error. Focusing on such cases of

weak predictability, we show that combining the forecasts of the parsimonious and larger

models can improve forecast accuracy. We first derive, theoretically, the optimal combina-

tion weight and combination benefit. In the special case in which the coefficients on the

variables of interest are of a magnitude that makes the restricted and unrestricted models

equally accurate, the MSE–minimizing forecast is a simple, equally–weighted average of the
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restricted and unrestricted forecasts. With a range of Monte Carlo and empirical examples,

we show that our proposed approach of combining forecasts from nested models works well

compared to various alternative methods of forecasting. Overall, in both the Monte Carlo

and empirical results, two forecast methods seem to work best, in the sense of consistently

yielding improvements in MSE: simple averaging of the restricted and unrestricted model

forecasts, and Bayesian (Minnesota BVAR) estimation of the unrestricted model.
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6 Appendix 1: Theory Details

Note that, in the notation below, W (·) denotes a standard (k × 1) Brownian motion.

Theorem 1:
∑T+P

t=T (û2
2,t+τ − û2

W,t+τ )→d

∫ 1+λP

1 ξW (s) =
{− 2

∫ 1+λP

1 α(s)s−1W ′(s)V 1/2(−JB1J ′ + B2)V 1/2dW (s)
+

∫ 1+λP

1 (1− (1− α(s))2)s−2W ′(s)V 1/2(−JB1J ′ + B2)V 1/2W (s)ds}
+ 2{−

∫ 1+λP

1 α(s)δ′B−1
2 (−JB1J ′ + B2)V 1/2dW (s)

+
∫ 1+λP

1 α2(s)s−1δ′B−1
2 (−JB1J ′ + B2)B−1

2 JB1J ′V 1/2W (s)ds

+
∫ 1+λP

1 α(s)(1− α(s))s−1δ′B−1
2 (−JB1J ′ + B2)V 1/2W (s)ds}

+ {−
∫ 1+λP

1 α(s)2δ′B−1
2 (−JB1J ′ + B2)B−1

2 δds}.

Proof of Theorem 1: The proof is provided in two stages. In the first stage we provide

an asymptotic expansion. In the second we apply a functional central limit theorem and a weak

convergence to stochastic integrals result, both from De Jong and Davidson (2000).
In the first stage we show that

∑T+P

t=T
(û2

2,t+τ − û2
W,t+τ ) (16)

= {− 2
∑T+P

t=T
αt(T/t)(T−1/2h′T,2,t+τ )(−JB1J

′ + B2)(T 1/2HT,2(t))

+T−1
∑T+P

t=T
(1− (1− αt)2)(T/t)2(T 1/2H ′

T,2(t))(−JB1J
′ + B2)(T 1/2HT,2(t))}

+2{−
∑T+P

t=T
αtδ

′B−1
2 (−JB1J

′ + B2)(T−1/2hT,2,t+τ )

+T−1
∑T+P

t=T
α2

t (T/t)δ′B−1
2 (−JB1J

′ + B2)B−1
2 JB1J

′(T 1/2HT,2(t))

+T−1
∑T+P

t=T
αt(1− αt)(T/t)δ′B−1

2 (−JB1J
′ + B2)(T 1/2HT,2(t))}

+{− T−1
∑T+P

t=T
α2

t (T/t)δ′B−1
2 (−JB1J

′ + B2)B−1
2 δ} + op(1).

To do so first note that straightforward algebra reveals that
∑T+P

t=T
(û2

2,t+τ − û2
W,t+τ ) (17)

= {− 2
∑T+P

t=T
αt(T/t)(T−1/2h′T,2,t+τ )(−JB1(t)J ′ + B2(t))(T 1/2HT,2(t))

+T−1
∑T+P

t=T
(1− (1− αt)2)(T/t)2(T 1/2H ′

T,2(t))B2(t)xT,2,tx
′
T,2,tB2(t)(T 1/2HT,2(t))

−T−1
∑T+P

t=T
α2

t (T/t)2(T 1/2H ′
T,2(t))JB1(t)J ′xT,2,tx

′
T,2,tJB1(t)J ′(T 1/2HT,2(t))

−2T−1
∑T+P

t=T
αt(1− αt)(T/t)2(T 1/2H ′

T,2(t))B2(t)xT,2,tx
′
T,2,tJB1(t)J ′(T 1/2HT,2(t))}

+2{−
∑T+P

t=T
αtδ

′B−1
2 (t)(−JB1(t)J ′ + B2(t))(T−1/2hT,2,t+τ )

+T−1
∑T+P

t=T
α2

t (T/t)δ′B−1
2 (t)(−JB1(t)J ′ + B2(t))xT,2,tx

′
T,2,tJB1(t)J ′(T 1/2HT,2(t))

+T−1
∑T+P

t=T
αt(1− αt)(T/t)δ′B−1

2 (t)(−JB1(t)J ′ + B2(t))xT,2,tx
′
T,2,tBT,2(t)(T 1/2HT,2(t))}

+{− T−1
∑T+P

t=T
α2

t (T/t)δ′B−1
2 (t)(−JB1(t)J ′ + B2(t))xT,2,tx

′
T,2,t(−JB1(t)J ′ + B2(t))B−1

2 (t)δ}

+op(1).
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We must then show that each bracketed term from (16) corresponds to that in (17). For brevity

we will show this in detail only for the first bracketed term. The second and third follow from similar

arguments.
Consider the first bracketed term in (17). If we add and subtract −JB1J ′ + B2 in the first

component, and rearrange terms we obtain

−2
∑T+P

t=T
αt(T/t)(T−1/2h′T,2,t+τ )(−JB1(t)J ′ + B2(t))(T 1/2HT,2(t))

= −2
∑T+P

t=T
αt(T/t)(T−1/2h′T,2,t+τ )(−JB1J

′ + B2)(T 1/2HT,2(t))

−2T−1/2
∑T+P

t=T
αt(T/t)[(T 1/2H ′

T,2(t))⊗ (T−1/2h′T,2,t+τ )]vec(T 1/2[(−JB1(t)J ′ + B2(t))− (−JB1J
′ + B2)]).

The first right-hand side term is the desired result. For the second right-hand side term first

note that Assumptions 3 and 4 suffice for each of α(t), T/t, T 1/2H ′
T,2(t) and vec(T 1/2[(−JB1(t)J ′+

B2(t)) − (−JB1J ′ + B2)]) to converge weakly. Applying Theorem 3.2 of de Jong and Davidson

(2000) then implies that the second right-hand side term is Op(T 1/2) and the proof is complete.
For the second, third and fourth components of the first bracketed term note that adding and

subtracting B2, B−1
2 , B1 and B−1

1 provides

T−1
∑T+P

t=T
(1− (1− αt)2)(T/t)2(T 1/2H ′

T,2(t))B2(t)xT,2,tx
′
T,2,tB2(t)(T 1/2HT,2(t)) (18)

= T−1
∑T+P

t=T
(1− (1− αt)2)(T/t)2(T 1/2H ′

T,2(t))B2(T 1/2HT,2(t))

+2T−1
∑T+P

t=T
(1− (1− αt)2)(T/t)2(T 1/2H ′

T,2(t))(B2(t)−B2)(T 1/2HT,2(t))

+T−1
∑T+P

t=T
(1− (1− αt)2)(T/t)2(T 1/2H ′

T,2(t))B2(xT,2,tx
′
T,2,t −B−1

2 )B2(T 1/2HT,2(t))

+2T−1
∑T+P

t=T
(1− (1− αt)2)(T/t)2(T 1/2H ′

T,2(t))B2(xT,2,tx
′
T,2,t −B−1

2 )(B2(t)−B2)(T 1/2HT,2(t))

+T−1
∑T+P

t=T
(1− (1− αt)2)(T/t)2(T 1/2H ′

T,2(t))(B2(t)−B2)(xT,2,tx
′
T,2,t −B−1

2 )(B2(t)−B2)(T 1/2HT,2(t))

+2T−1
∑T+P

t=T
(1− (1− αt)2)(T/t)2(T 1/2H ′

T,2(t))(B2(t)−B2)B−1
2 (B2(t)−B2)(T 1/2HT,2(t)),

T−1
∑T+P

t=T
α2

t (T/t)2(T 1/2H ′
T,2(t))JB1(t)J ′xT,2,tx

′
T,2,tJB1(t)J ′(T 1/2HT,2(t)) (19)

= T−1
∑T+P

t=T
α2

t (T/t)2(T 1/2H ′
T,2(t))JB1J

′(T 1/2HT,2(t))

+2T−1
∑T+P

t=T
α2

t (T/t)2(T 1/2H ′
T,2(t))JB1J

′B−1
2 J(B1(t)−B1)J ′(T 1/2HT,2(t))

+T−1
∑T+P

t=T
α2

t (T/t)2(T 1/2H ′
T,2(t))JB1J

′(xT,2,tx
′
T,2,t −B−1

2 )JB1J
′(T 1/2HT,2(t))

+2T−1
∑T+P

t=T
α2

t (T/t)2(T 1/2H ′
T,2(t))JB1J

′(xT,2,tx
′
T,2,t −B−1

2 )J(B1(t)−B1)J ′(T 1/2HT,2(t))

+T−1
∑T+P

t=T
α2

t (T/t)2(T 1/2H ′
T,2(t))J(B1(t)−B1)J

′
(xT,2,tx

′
T,2,t −B−1

2 )J(B1(t)−B1)J ′(T 1/2HT,2(t))

+T−1
∑T+P

t=T
α2

t (T/t)2(T 1/2H ′
T,2(t))J(B1(t)−B1)J ′B−1

2 J(B1(t)−B1)J ′(T 1/2HT,2(t)),
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T−1
∑T+P

t=T
αt(1− αt)(T/t)2(T 1/2H ′

T,2(t))B2(t)xT,2,tx
′
T,2,tJB1(t)J ′(T 1/2HT,2(t)) (20)

= T−1
∑T+P

t=T
αt(1− αt)(T/t)2(T 1/2H ′

T,2(t))JB1J
′(T 1/2HT,2(t))

+T−1
∑T+P

t=T
αt(1− αt)(T/t)2(T 1/2H ′

T,2(t))B2(xT,2,tx
′
T,2,t −B−1

2 )JB1J
′(T 1/2HT,2(t))

+T−1
∑T+P

t=T
αt(1− αt)(T/t)2(T 1/2H ′

T,2(t))B2(xT,2,tx
′
T,2,t −B−1

2 )J(B1(t)−B1)J ′(T 1/2HT,2(t))

+T−1
∑T+P

t=T
αt(1− αt)(T/t)2(T 1/2H ′

T,2(t))(B2(t)−B2)B−1
2 JB1J

′(T 1/2HT,2(t))

+T−1
∑T+P

t=T
αt(1− αt)(T/t)2(T 1/2H ′

T,2(t))(B2(t)−B2)B−1
2 J(B1(t)−B1)J ′(T 1/2HT,2(t))

+T−1
∑T+P

t=T
αt(1− αt)(T/t)2(T 1/2H ′

T,2(t))J(B1(t)−B1)J ′(T 1/2HT,2(t))

+T−1
∑T+P

t=T
αt(1− αt)(T/t)2(T 1/2H ′

T,2(t))(B2(t)−B2)(xT,2,tx
′
T,2,t −B−1

2 )J(B1(t)−B1)J ′(T 1/2HT,2(t))

+T−1
∑T+P

t=T
αt(1− αt)(T/t)2(T 1/2H ′

T,2(t))(B2(t)−B2)(xT,2,tx
′
T,2,t −B−1

2 )JB1J
′(T 1/2HT,2(t)).

Note that the weighted sum of the first right-hand side term of each of (18) – (20) gives us

T−1
∑T+P

t=T
(1− (1− αt)2)(T/t)2(T 1/2H ′

T,2(t))B2(T 1/2HT,2(t))

−T−1
∑T+P

t=T
α2

t (T/t)2(T 1/2H ′
T,2(t))JB1J

′(T 1/2HT,2(t))

−2T−1
∑T+P

t=T
αt(1− αt)(T/t)2(T 1/2H ′

T,2(t))JB1J
′(T 1/2HT,2(t))

= T−1
∑T+P

t=T
(1− (1− αt)2)(T/t)2(T 1/2H ′

T,2(t))(−JB1J
′ + B2)(T 1/2HT,2(t))

the second right-hand side term in (17). We must therefore show that all of the remaining right-hand
side terms in (18)-(20) are op(1). The proof of each is very similar. For example, taking the absolute
value of the fifth right-hand side term in (18) provides

|T−1
∑T+P

t=T
(1− (1− αt)2)(T/t)2(T 1/2H ′

T,2(t))(B2(t)−B2)(xT,2,tx
′
T,2,t −B−1

2 )(B2(t)−B2)(T 1/2HT,2(t))|

≤ k4(sup
t

|T 1/2HT,2(t)|)2(sup
t

|B2(t)−B2|)2(T−1
∑T+P

t=T
|xT,2,tx

′
T,2,t −B−1

2 |).

Since assumptions 3 and 4 suffice for T−1
∑T+P

t=T |xT,2,tx′T,2,t −B−1
2 | = Op(1), supt |T 1/2HT,2(t)| =

Op(1) and supt |T 1/2HT,2(t)| = op(1) we obtain the desired result.

For the second stage of the proof we show that the expansion in (17) converges in distribution

to the term provided in the Theorem. To do so recall that Assumption 4 implies αt ⇒ α(s) and

(t/T ) ⇒ s. Also, Assumptions 3 (a) - (d) imply T 1/2HT,2(t) ⇒ s−1V 1/2W (s). Continuity then

provides the desired results for the second contribution to the first bracketed term, for the second

and third contributions to the second bracketed term and the third bracketed term.
The remaining two contributions (the first in each of the first two bracketed terms), are each

weighted sums of increments hT,t+τ . Consider the first contribution to the second bracketed term.
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Since this increment satisfies Assumption 3 (d) and has an associated long-run variance V , we can
apply Theorem 4.1 of De Jong and Davidson (2000) directly to obtain the desired convergence in
distribution

−
∑T+P

t=T
αtδ

′B−1
2 (−JB1J

′ + B2)(T−1/2hT,2,t+τ )→d

−
∫ 1+λP

1
α(s)δ′B−1

2 (−JB1J
′ + B2)V 1/2dW (s).

For the first contribution to the first bracketed term additional care is needed. Again, since the
increments satisfy Assumption 3 (d) with long-run variance V we can apply Theorem 4.1 of De Jong
and Davidson (2000) to obtain

−2
∑T+P

t=T
αt(T/t)(T−1/2h′T,2,t+τ )(−JB1J

′ + B2)(T 1/2HT,2(t))

→d −2
∫ 1+λP

1
α(s)s−1W ′(s)V 1/2(−JB1J

′ + B2)V 1/2dW (s) + Λ.

Note the addition of the drift term Λ. To obtain the desired result we must show that this term is

zero. A detailed proof is provided in Lemma A6 of Clark and McCracken (2005a) – albeit under

the technical conditions provided in Hansen (1992) rather than those provided here. Rather than

repeat the proof we provide an intuitive argument. Note that HT,2(t) = t−1
∑t−τ

s=1 hT,2,s+τ . In

particular note the range of summation. Since Assumption 3 (b) maintains that the increments of

the stochastic integral hT,2,t+τ form an MA(τ − 1) we find that hT,2,t+τ is uncorrelated with every

element of HT,2(t). Since Λ captures the contribution to the mean of the limiting distribution due

to covariances between the increments hT,2,t+τ and the elements of HT,2(t) we know that Λ = 0 and

the proof is complete.

Proof of Corollary 1: Note that both the second bracketed term and the first component of

the first bracketed term are zero mean and moreover, the third bracketed term is nonstochastic.

Taking expectations we then obtain

E{
∫ 1+λP

1
ξW (s)}

= {0 +
∫ 1+λP

1
(1− (1− α(s))2)s−2E[W ′(s)V 1/2(−JB1J

′ + B2)V 1/2W (s)]ds}

+{0}−
∫ 1+λP

1
α2(s)δ′B−1

2 (−JB1J
′ + B2)B−1

2 δds

=
∫ 1+λP

1
(1− (1− α(s))2)s−2tr(E[W (s)W ′(s)](−JB1J

′ + B2)V )ds

−
∫ 1+λP

1
α2(s)δ′B−1

2 (−JB1J
′ + B2)B−1

2 δds

=
∫ 1+λP

1
(1− (1− α(s))2)s−1tr((−JB1J

′ + B2)V )ds

−
∫ 1+λP

1
α2(s)δ′B−1

2 (−JB1J
′ + B2)B−1

2 δds.
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Proof of Corollary 2: We obtain our pointwise optimal combining weight by maximizing, for
each fixed s, the argument of the integral in Corollary 1. That is we choose α(s) to maximize

(1− (1− α(s))2)s−1tr((−JB1J
′ + B2)V )− α2(s)δ′B−1

2 (−JB1J
′ + B2)B−1

2 δ (21)

Differentiating (21) with respect to α we obtain

FOC α : 2(1− α(s))s−1tr((−JB1J
′ + B2)V )− 2α(s)δ′B−1

2 (−JB1J
′ + B2)B−1

2 δ

SOC α : −2α(s)s−1tr((−JB1J
′ + B2)V )− 2δ′B−1

2 (−JB1J
′ + B2)B−1

2 δ.

Setting the FOC to zero and solving for α(s) provides the formula from the Corollary. Algebra

reveals that the SOC is negative at this solution and we obtain the desired result.

Proof of Proposition 1: Straightforward algebra reveals that

α̂BG =
(N−1

∑T−τ
s=R û2,t+τx′2,t)(J β̂1,R − β̂2,R)

(J β̂1,R − β̂2,R)′(N−1
∑T−τ

s=R x2,tx′2,t)(J β̂1,R − β̂2,R)

where J β̂1,R− β̂2,R = −(−JB1(R)J ′+B2(R))H2(R)−T−1/2(−JB1(R)J ′+B2(R))B−1
2 (R)δ

and N−1 ∑T−τ
s=R û2,t+τx′2,t = N−1 ∑T−τ

s=R u2,t+τx′2,t − (N−1 ∑T−τ
s=R x2,tx′2,t)B2(R)H2(R). Note

that Assumption 3 implies Bi(T ) →p Bi, i = 1, 2 and N−1 ∑T−τ
s=R x2,tx′2,t →p B−1

2 while

Assumption 4 suffices for R1/2H2(R)→d V 1/2W1 and N−1/2 ∑T−τ
s=R ut+τx2,t →d V 1/2W0 where

Assumption 3 (b) (and the range of summation) implies that W0 and W1 are uncorrelated

and hence independent. Let B̃ ≡ (−JB1J ′ + B2). Taking limits and rearranging terms we

then obtain

α̂BG =
−(N−1

∑T−τ

s=R
ut+τ x′2,t)B̃H2(R) + H′

2(R)B̃H2(R)− T−.5(N−1
∑T−τ

s=R
ut+τ x′2,t)B̃B−1

2 δ + T−.5H′
2(R)B̃B−1

2 δ + op(T−.5)

H′
2(R)B̃H2(R) + 2T−.5H′

2(R)B̃B−1
2 δ + T−1δ′B−1

2 B̃B−1
2 δ + op(T−.5)

= 1−
(N−1

∑T−τ

s=R
ut+τ x2,t + T−.5B−1

2 δ)′B̃(H2(R) + T−.5B−1
2 δ) + op(T−.5)

(H2(R) + T−.5B−1
2 δ)′B̃(H2(R) + T−.5B−1

2 δ) + op(T−.5)

= 1− (
N

R
)−1

(N−.5V −.5
∑T−τ

s=R
ut+τ x2,t + (N

T )1/2V −.5B−1
2 δ)′[V 1/2B̃V 1/2](R1/2V −.5H2(R) + (R

T )1/2V −.5B−1
2 δ)

(R1/2V −.5H2(R) + (R
T )1/2V −.5B−1

2 δ)′[V 1/2B̃V 1/2](R1/2V −.5H2(R) + (R
T )1/2V −.5B−1

2 δ)
+ op(1)

→ d1− π−1

(
(W0 + π

1+π V −.5B−1
2 δ)′[V 1/2B̃V 1/2](W1 + 1

1+π V −.5B−1
2 δ)

(W1 + 1
1+π V −.5B−1

2 δ)′[V 1/2B̃V 1/2](W1 + 1
1+π V −.5B−1

2 δ)

)

and the proof is complete.
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7 Appendix 2: Application Details

Unless otherwise noted, all data are taken from the FAME database of the Federal Reserve
Board of Governors. All data end in 2004:Q4 or December 2004. Start point refers to
the beginning of the regression sample, determined by the availability of the raw data,
any differencing, and lag orders. The predictand column provides the data frequency and
transformation of the predictand. Inflation rates are calculated as log changes. In all cases
the forecasting models include a constant in the set of predictors. Note that CFNAI refers
to the Federal Reserve Bank of Chicago’s national activity index, a factor index of the
business cycle obtained from the bank’s website.

application predictand predictors data notes
Ind. prod. & fac-
tor index

production (monthly,
1200 ∆ ln)

6 lags of production; 6 lags of
CFNAI

start point: 1967:9

Disp. income &
factor index

income (monthly, 1200
∆ ln)

6 lags of income; 6 lags of CF-
NAI

start point: 1967:9

M&T sales & fac-
tor index

sales (monthly, 1200
∆ ln)

6 lags of sales; 6 lags of CFNAI start point: 1967:9

Employ. & factor
index

employment (monthly,
1200 ∆ ln)

6 lags of employ.; 6 lags of CF-
NAI

start point: 1967:9

Unemp. & ins.
claims

unemployment rate
(monthly, ∆)

6 lags of unemp.; 6 lags of new
claims for unemp. insurance; 6
lags of continuing claims for un-
emp. insurance

start point: 1967:7

Inflation & out-
put gap

annualized core PCE
inflation (quarterly,
∆)

2 lags of inflation; 1 lag
of output gap (log of actual
GDP/CBO potential GDP)

start point: 1960:1
CBO series from St.
Louis Fed’s FRED
database

Infl. & gap, ULC,
imports

annualized core PCE
inflation (quarterly,
∆)

2 lags of infl.; 1 lag of output
gap; 2 lags of unit labor costs
(∆ ln); 2 lags of import price in-
flation

start point: 1967:4

GDP & VAR(2) GDP (quarterly, 400
∆ ln)

2 lags of: GDP; ln(consumption
/GDP); aggregate hours (∆ ln);
core PCE inflation (∆); and the
3-month T-bill rate (∆)

start point: 1964:4

3mo. T-bill &
VAR(2)

3-month T-bill rate
(quarterly, ∆)

same as in GDP application start point: 1964:4

Stock return &
d/p, int. rate

excess return on S&P
500 (quarterly, per-
centage points: nomi-
nal return less safe in-
terest rate)

1 lag of the dividend-price ratio;
1 lag of interest rate relative to
prior year average

start point: 1953:2
d/p ratio based on
average of dividends
over prior year; divi-
dend data from Global
Insight; interest rate
(compounded over
three months of quar-
ter) from Kenneth
French’s website

U.S.-Switz. ex.
rate & int. diff.

exchange rate
(monthly, 1200 ∆ ln)

interest differential at 1, 3, 6,
and 12 months, 1 lag each

start point: 1973:7
interest rates from
Global Insight

U.S.-U.K. ex. rate
& int. diff.

exchange rate
(monthly, 1200 ∆ ln)

interest differentials at 1, 3, 6,
and 12 months, 1 lag each

start point: 1973:10
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Table 1: Summary of Forecast Approaches

approach to forecasting yt+1 details
1. restricted OLS estimates of model omitting x terms

2. unrestricted OLS estimates of full model

3. opt. combination: known α∗
t α∗

t × restricted + (1− α∗
t ) × unrestricted, with α∗

t computed
according to (5), using the known features of the DGP

4. opt. combination: α̂∗
t α̂∗

t × restricted + (1− α̂∗
t ) × unrestricted, with α̂∗

t computed
according to (8), using moments estimated from the data

5. simple average .5 × restricted + .5 × unrestricted

6. SIC forecast with model (restricted or unrestricted) with lower SIC at t

7. AIC forecast with model (restricted or unrestricted) with lower AIC at t

8. BVAR forecast with posterior mean estimate of unrestricted model, using
Minnesota–type prior (all prior means equal 0; prior variances
pinned down by hyperparameters λ = .2 and θ = .5)

9. BMA: φ = .2 Bayesian model averaging of restricted and unrestricted forecasts,
using prior mean of equal weights and shrinkage parameter φ = .2

10. BMA: φ = 2 Bayesian model averaging of restricted and unrestricted forecasts,
using prior mean of equal weights and shrinkage parameter φ = 2
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Table 2: Monte Carlo Results, Average MSEs
(for restricted model, average MSE; for other forecasts,

ratio of average MSE to restricted model’s average MSE)
DGP 1: signal=noise DGP 1: signal>noise

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .762 .768 .765 .761 .821 .823 .820 .816
unrestricted 1.004 1.002 1.000 .998 .933 .935 .934 .931
opt. combination: known α∗

t .995 .995 .994 .993 .931 .933 .933 .930
opt. combination: α̂∗

t 1.001 .999 .998 .996 .936 .937 .936 .933
simple average .995 .995 .994 .993 .943 .945 .945 .944
SIC 1.007 1.004 1.003 1.002 .956 .953 .950 .943
AIC 1.009 1.004 1.003 1.001 .940 .940 .938 .934
BVAR 1.001 .997 .997 .995 .931 .932 .932 .930
BMA: φ = .2 .996 .995 .995 .994 .939 .940 .940 .937
BMA: φ = 2 1.000 .998 .997 .996 .940 .940 .939 .935

DGP 2: signal=noise DGP 2: signal>noise
P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80

restricted .794 .802 .798 .793 .901 .907 .903 .897
unrestricted 1.013 1.006 1.000 .991 .893 .889 .884 .876
opt. combination: known α∗

t .975 .974 .973 .970 .878 .876 .874 .868
opt. combination: α̂∗

t .985 .982 .980 .976 .883 .881 .878 .872
simple average .975 .974 .973 .970 .890 .890 .889 .887
SIC 1.003 1.002 1.002 1.001 .960 .955 .947 .929
AIC 1.015 1.010 1.006 .999 .904 .897 .890 .880
BVAR .975 .974 .973 .971 .892 .891 .889 .884
BMA: φ = .2 .980 .978 .977 .973 .883 .882 .879 .873
BMA: φ = 2 .993 .990 .988 .984 .894 .891 .886 .878

Notes:
1. DGPs 1 and 2 are defined in equations (11) and (12). In the DGP 1 simulations, the coefficient b11 is set to .037
in the signal = noise experiment and .10 in the signal > noise experiment. In the DGP 2 simulations, the coefficients
bij are set at empirically–based values (b11 = .10, b21 = .03, b22 = −.02, b31 = .05, b32 = −.03) in the signal > noise
experiment and .527 times the empirical values in the signal = noise experiment.
2. The forecast approaches are defined in Table 1.
3. The total number of observations generated for each experiment is 160 (not counting the initial observations
equal to the number of lags in the DGP). Forecasting begins with observation 81. Results are reported for forecasts
evaluated over the following samples: 81 (P=1); 81-100 (P=20); 81-120 (P=40); and 81-160 (P=80).
4. The table entries are based on averages of forecast MSEs across 10,000 Monte Carlo simulations.
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Table 3: Monte Carlo Results, Average MSEs in DGPs with β22 = 0
(for restricted model, average MSE; for other forecasts,

ratio of average MSE to restricted model’s average MSE)
DGP 1: signal=0 DGP 2: signal=0

method/model P=1 P=20 P=40 P=80 P=1 P=20 P=40 P=80
restricted .751 .758 .756 .752 .748 .757 .754 .750
unrestricted 1.019 1.014 1.012 1.010 1.075 1.065 1.059 1.049
opt. combination: known α∗

t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
opt. combination: α̂∗

t 1.010 1.007 1.006 1.005 1.025 1.021 1.019 1.016
simple average 1.006 1.004 1.003 1.003 1.018 1.016 1.015 1.012
SIC 1.005 1.003 1.003 1.002 1.001 1.000 1.000 1.000
AIC 1.008 1.008 1.007 1.006 1.025 1.015 1.013 1.011
BVAR 1.015 1.009 1.008 1.007 1.018 1.017 1.016 1.015
BMA: φ = .2 1.006 1.004 1.004 1.003 1.021 1.017 1.016 1.013
BMA: φ = 2 1.008 1.005 1.005 1.004 1.019 1.014 1.013 1.011

Notes:
1. See the notes to Table 2.
2. In these experiments, the DGP coefficients bij are set to 0.
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Table 4: Monte Carlo Probabilities of Equaling
or Beating Restricted Model’s MSE, DGP 1

DGP 1: signal=noise
P=1 P=20 P=40 P=80

method/model = MSE1 < MSE1 = MSE1 < MSE1 = MSE1 < MSE1 = MSE1 < MSE1

unrestricted .000 .499 .000 .436 .000 .422 .000 .446
opt. combination: known α∗

t .000 .509 .000 .491 .000 .493 .000 .539
opt. combination: α̂∗

t .005 .502 .000 .407 .000 .401 .000 .437
simple average .000 .509 .000 .494 .000 .502 .000 .558
SIC .861 .064 .780 .081 .733 .091 .655 .113
AIC .660 .161 .512 .205 .432 .225 .319 .277
BVAR .000 .491 .000 .481 .000 .497 .000 .516
BMA: φ = .2 .000 .508 .000 .483 .000 .485 .000 .537
BMA: φ = 2 .000 .507 .000 .457 .000 .448 .000 .481

DGP 1: signal>noise
P=1 P=20 P=40 P=80

= MSE1 < MSE1 = MSE1 < MSE1 = MSE1 < MSE1 = MSE1 < MSE1

unrestricted .000 .542 .000 .701 .000 .772 .000 .875
opt. combination: known α∗

t .000 .547 .000 .723 .000 .798 .000 .894
opt. combination: α̂∗

t .000 .548 .000 .709 .000 .787 .000 .889
simple average .000 .565 .000 .792 .000 .873 .000 .953
SIC .359 .342 .217 .518 .146 .606 .067 .761
AIC .165 .452 .074 .635 .040 .724 .011 .848
BVAR .000 .538 .000 .706 .000 .793 .000 .892
BMA: φ = .2 .000 .559 .000 .763 .000 .840 .000 .933
BMA: φ = 2 .000 .549 .000 .714 .000 .786 .000 .887

DGP 1: signal=0
P=1 P=20 P=40 P=80

= MSE1 < MSE1 = MSE1 < MSE1 = MSE1 < MSE1 = MSE1 < MSE1

unrestricted .000 .475 .000 .319 .000 .262 .000 .205
opt. combination: known α∗

t 1.000 .000 1.000 .000 1.000 .000 1.000 .000
opt. combination: α̂∗

t .008 .478 .000 .275 .000 .223 .000 .183
simple average .000 .484 .000 .357 .000 .315 .000 .276
SIC .957 .015 .923 .018 .906 .014 .885 .014
AIC .830 .078 .724 .076 .666 .073 .587 .068
BVAR .000 .479 .000 .427 .000 .402 .000 .369
BMA: φ = .2 .000 .483 .000 .351 .000 .306 .000 .265
BMA: φ = 2 .000 .483 .000 .336 .000 .283 .000 .231

Notes:
1. See the notes to Tables 2 and 3.
2. The table entries are frequencies (percentages of 10,000 Monte Carlo simulations) with which each forecast approach
yields a forecast MSE less than or equal to the restricted model’s MSE.
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Table 5: Monte Carlo Probabilities of Equaling or
Beating Restricted Model’s MSE, DGP 2

DGP 2: signal=noise
P=1 P=20 P=40 P=80

method/model = MSE1 < MSE1 = MSE1 < MSE1 = MSE1 < MSE1 = MSE1 < MSE1

unrestricted .000 .492 .000 .470 .000 .478 .000 .527
opt. combination: known α∗

t .000 .520 .000 .609 .000 .658 .000 .745
opt. combination: α̂∗

t .000 .512 .000 .548 .000 .582 .000 .671
simple average .000 .520 .000 .616 .000 .678 .000 .776
SIC .968 .015 .935 .022 .910 .029 .863 .044
AIC .560 .215 .388 .261 .291 .298 .169 .385
BVAR .000 .523 .000 .570 .000 .624 .000 .709
BMA: φ = .2 .000 .515 .000 .577 .000 .622 .000 .717
BMA: φ = 2 .000 .513 .000 .518 .000 .538 .000 .600

DGP 2: signal>noise
P=1 P=20 P=40 P=80

= MSE1 < MSE1 = MSE1 < MSE1 = MSE1 < MSE1 = MSE1 < MSE1

unrestricted .000 .541 .000 .720 .000 .804 .000 .917
opt. combination: known α∗

t .000 .558 .000 .786 .000 .871 .000 .957
opt. combination: α̂∗

t .000 .557 .000 .779 .000 .864 .000 .955
simple average .000 .579 .000 .859 .000 .940 .000 .990
SIC .632 .199 .457 .338 .335 .451 .168 .660
AIC .106 .483 .036 .680 .015 .777 .002 .907
BVAR .000 .562 .000 .808 .000 .903 .000 .973
BMA: φ = .2 .000 .564 .000 .797 .000 .881 .000 .962
BMA: φ = 2 .000 .549 .000 .732 .000 .815 .000 .923

DGP 2: signal=0
P=1 P=20 P=40 P=80

= MSE1 < MSE1 = MSE1 < MSE1 = MSE1 < MSE1 = MSE1 < MSE1

unrestricted .000 .461 .000 .264 .000 .183 .000 .110
opt. combination: known α∗

t 1.000 .000 1.000 .000 1.000 .000 1.000 .000
opt. combination: α̂∗

t .000 .479 .000 .320 .000 .254 .000 .192
simple average .000 .479 .000 .361 .000 .309 .000 .255
SIC .999 .001 .998 .000 .997 .000 .996 .000
AIC .893 .045 .812 .036 .771 .032 .719 .023
BVAR .000 .484 .000 .397 .000 .364 .000 .300
BMA: φ = .2 .000 .479 .000 .348 .000 .291 .000 .231
BMA: φ = 2 .000 .487 .000 .322 .000 .251 .000 .178

Notes:
1. See the notes to Tables 2-4.
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Table 6: Application Results
RMSE for restricted forecast, and MSE ratios for other forecasts

Ind. prod. & Disp. income M&T sales & Employ. &

factor index & factor index factor index factor index

method/model 78-91 92-04 78-91 92-04 78-91 92-04 78-91 92-04
restricted 8.561 6.030 7.997 9.242 13.631 9.756 2.119 1.096
unrestricted .889 .925 1.140 .995 .940 1.000 .832 1.057
opt. combination: α̂∗

t .888 .923 1.066 .991 .936 .986 .826 1.022
simple average .897 .936 1.021 .991 .943 .965 .847 .925
SIC 1.024 .925 1.038 1.000 .992 1.000 .853 1.057
AIC .918 .925 1.140 .995 .940 1.000 .832 1.057
BVAR .906 .934 .946 .990 .940 .982 .879 .995
BMA: φ = .2 .892 .922 1.078 .992 .936 .991 .838 1.007
BMA: φ = 2 .894 .925 1.137 .995 .940 1.000 .828 1.057

Unemp. & Inflation Infl. & gap, GDP &

ins. claims & output gap ULC, imports VAR(2)

78-91 92-04 78-91 92-04 78-91 92-04 78-91 92-04
restricted .189 .136 1.155 .568 1.164 .572 3.805 1.824
unrestricted .903 .849 .937 .962 .973 1.048 .849 1.082
opt. combination: α̂∗

t .877 .838 .941 .958 .975 .982 .814 1.034
simple average .869 .854 .954 .957 .953 .959 .809 .972
SIC .966 .849 .937 .962 1.000 1.000 1.000 1.001
AIC .903 .849 .937 .962 1.140 1.048 .911 1.082
BVAR .832 .817 .960 1.001 .975 1.021 .907 1.036
BMA: φ = .2 .886 .848 .951 .955 .967 .977 .811 1.004
BMA: φ = 2 .903 .849 .946 .962 1.013 1.021 .854 1.079

3mo. T-bill & Stock return & U.S.-Switz. ex. U.S.-U.K. ex.

VAR(2) d/p, int. rate rate & int. diff. rate & int. diff.

78-91 92-04 78-91 92-04 78-91 92-04 78-91 92-04
restricted 1.221 .419 8.118 7.826 4.069 3.126 3.509 2.602
unrestricted 1.042 1.015 .993 1.175 1.105 1.015 1.010 1.044
opt. combination: α̂∗

t 1.020 .928 .977 1.151 1.048 1.004 .998 1.026
simple average 1.000 .903 .933 1.068 1.032 1.002 .997 1.018
SIC 1.000 1.000 .993 1.175 1.000 1.000 1.000 1.000
AIC 1.022 1.015 .993 1.175 1.086 1.000 1.007 1.000
BVAR .927 .790 .937 1.100 1.036 1.010 .982 1.040
BMA: φ = .2 1.010 .933 .960 1.123 1.042 1.003 .997 1.021
BMA: φ = 2 1.038 .999 .993 1.172 1.054 1.003 .998 1.019

Notes:
1. The table presents MSE results for 1–step ahead forecasts over the indicated samples. In each case, the forecast
with the lowest MSE is indicated with a bold font.
2. Details of the applications (data, forecast model specification, etc.) are provided in Section 4.1 and Appendix 2.
3. The forecast approaches are defined in Table 1.
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Table 7: Comparison of Each Forecast’s MSE to Best MSE,
Summary Statistics Across 12 Applications and Two Sample Periods

mean median st. dev. 90%ile – 10%ile
restricted 1.084 1.062 .083 .220
unrestricted 1.069 1.041 .075 .162
opt. combination: α̂∗

t 1.043 1.024 .052 .120
simple average 1.025 1.013 .036 .075
SIC 1.071 1.041 .078 .171
AIC 1.076 1.052 .079 .189
BVAR 1.030 1.019 .035 .073
BMA: φ = .2 1.040 1.020 .049 .112
BMA: φ = 2 1.065 1.046 .071 .160

Notes:
1. See the notes to Table 6.
2. The presented results are summary statistics, across 24 (12 applications × two sample periods) sets of application
results, for the ratio of each forecast’s MSE to the best MSE in the given case (application and sample period).
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